Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Journal of Veterinary Science ; : e81-2020.
Article in English | WPRIM | ID: wpr-833736

ABSTRACT

Background@#Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. @*Objectives@#In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. @*Methods@#For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. @*Results@#GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis.We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules.Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. @*Conclusions@#These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.

2.
Journal of Veterinary Science ; : e9-2019.
Article in English | WPRIM | ID: wpr-758898

ABSTRACT

Acetylcholinesterase (AChE) activity level can be used as a diagnostic marker for anticholinesterase pesticide poisoning. In this study, we aimed to establish a baseline level of normal brain AChE activity in wild birds. AChE activity was measured in the brains of 87dead wild birds (26 species). The level of AChE activity ranged from 6.40 to 15.9 µmol/min/g of brain tissue in normal wild birds. However, the brain tissue AChE activity level in wild birds exposed to organophosphate (OP) pesticide was 48.0%–96.3% of that in the normal birds. These results may serve as reference values to facilitate routine diagnosis and monitoring of OP-poisoned wild birds.


Subject(s)
Acetylcholinesterase , Birds , Brain , Diagnosis , Organophosphates , Poisoning , Reference Values
3.
Journal of Veterinary Science ; : e14-2019.
Article in English | WPRIM | ID: wpr-758894

ABSTRACT

With the increased use of cell therapy in the veterinary sector, there is a growing demand for the development of cell-based medicinal products and the determination of their safety. Currently, the Korean Animal and Plant Quarantine Agency has established a guideline for evaluating the safety of cell-based medicinal products for animal use. The guideline includes items related to definition, classification, management, manufacturing procedure and quality control (standard and test method), stability testing, toxicity testing, pharmacological testing, and performance of clinical trials. In addition, testing protocols related to safety assessment of animal cell-based products such as chromosome karyotyping, tumorigenicity testing, confirmatory testing of biodistribution and kinetics, and target animal safety testing are described in detail. Moreover, because cell-based medicinal products are novel therapies, deviations from traditional designs may be justified in order to obtain relevant safety information on the treatment. Additionally, this guideline can be amended on the basis of new scientific findings.


Subject(s)
Animals , Carcinogenicity Tests , Cell- and Tissue-Based Therapy , Classification , Karyotyping , Kinetics , Plants , Quality Control , Quarantine , Toxicity Tests
4.
Journal of Veterinary Science ; : 34-42, 2019.
Article in English | WPRIM | ID: wpr-758886

ABSTRACT

In vitro prediction of hepatotoxicity can enhance the performance of non-clinical animal testing for identifying chemical hazards. In this study, we assessed high-content analysis (HCA) using multi-parameter cell-based assays as an in vitro hepatotoxicity testing model using various hepatotoxicants and human hepatocytes such as HepG2 cells and human primary hepatocytes (hPHs). Both hepatocyte types were exposed separately to multiple doses of ten hepatotoxicants associated with liver injury whose mechanisms of action have been described. HCA data were obtained using fluorescence probes for nuclear size (Hoechst), mitochondrial membrane potential (TMRM), cytosolic free calcium (Fluo-4AM), and lipid peroxidation (BODIPY). Cellular alterations were observed in response to all hepatotoxicants tested. The most sensitive parameter was TMRM, with high sensitivity at a low dose, next was BODIPY, followed by Fluo-4AM. HCA data from HepG2 cells and hPHs were generally concordant, although some inconsistencies were noted. Both hepatocyte types showed mild or severe mitochondrial impairment and lipid peroxidation in response to several hepatotoxicants. The results demonstrate that the application of HCA to in vitro hepatotoxicity testing enables more efficient hazard identification, and further, they suggest that certain parameters could serve as sensitive endpoints for predicting the hepatotoxic potential of chemical compounds.


Subject(s)
Animals , Humans , Calcium , Cytosol , Fluorescence , Hep G2 Cells , Hepatocytes , In Vitro Techniques , Lipid Peroxidation , Liver , Membrane Potential, Mitochondrial
5.
Journal of Veterinary Science ; : 431-437, 2015.
Article in English | WPRIM | ID: wpr-207362

ABSTRACT

Monoclonal anti-enrofloxacin antibody was prepared for a direct competitive enzyme-linked immunosorbent assay (ELISA) and purification system using monoclonal antibody (mAb) coupled magnetic nanoparticles (MNPs). The IC50 values of the developed mAb for enrofloxacin (ENR), ciprofloxacin, difloxacin, sarafloxacin, pefloxacin, and norfloxacin were 5.0, 8.3, 9.7, 21.7, 36.0, and 63.7 ng/mL, respectively. The lowest detectable level of ENR was 0.7 ng/mL in the prepared ELISA system. To validate the developed ELISA in the food matrix, known amounts of ENR were spiked in meat and egg samples at 10, 20 and 30 ng/mL. Recoveries for ENR ranged from 72.9 to 113.16% with a coefficient of variation (CV) of 2.42 to 10.11%. The applicability of the mAb-MNP system was verified by testing the recoveries for ENR residue in three different matrices. Recoveries for ENR ranged from 75.16 to 86.36%, while the CV ranged from 5.08 to 11.53%. Overall, ENR-specific monoclonal antibody was prepared and developed for use in competitive to ELISAs for the detection of ENR in animal meat samples. Furthermore, we suggest that a purification system for ENR using mAb-coupled MNPs could be useful for determination of ENR residue in food.


Subject(s)
Animals , Ciprofloxacin , Enzyme-Linked Immunosorbent Assay , Inhibitory Concentration 50 , Meat , Nanoparticles , Norfloxacin , Ovum , Pefloxacin
6.
Journal of Veterinary Science ; : 61-71, 2014.
Article in English | WPRIM | ID: wpr-56432

ABSTRACT

This study was performed to assess the neurotoxic effects of methylmercury, arsanilic acid and danofloxacin by quantification of neural-specific proteins in vitro. Quantitation of the protein markers during 14 days of differentiation indicated that the mouse ESCs were completely differentiated into neural cells by Day 8. The cells were treated with non-cytotoxic concentrations of three chemicals during differentiation. Low levels of exposure to methylmercury decreased the expression of GABAA-R and Nestin during the differentiating stage, and Nestin during the differentiated stage. In contrast, GFAP, Tuj1, and MAP2 expression was affected only by relatively high doses during both stages. Arsanilic acid affected the levels of GABA(A)-R and GFAP during the differentiated stage while the changes of Nestin and Tuj1 were greater during the differentiating stage. For the neural markers (except Nestin) expressed during both stages, danofloxacin affected protein levels at lower concentrations in the differentiated stage than the differentiating stage. Acetylcholinesterase activity was inhibited by relatively low concentrations of methylmercury and arsanilic acid during the differentiating stage while this activity was inhibited only by more than 40 microM of danofloxacin in the differentiated stage. Our results provide useful information about the different toxicities of chemicals and the impact on neural development.


Subject(s)
Animals , Mice , Acetylcholinesterase/metabolism , Arsanilic Acid/toxicity , Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Environmental Pollutants/toxicity , Fluorescent Antibody Technique , Fluoroquinolones/toxicity , Gene Expression Regulation/drug effects , Methylmercury Compounds/toxicity , Nerve Tissue Proteins/metabolism , Neurons/cytology , Tetrazolium Salts/metabolism , Thiazoles/metabolism
7.
Journal of Veterinary Science ; : 143-150, 2013.
Article in English | WPRIM | ID: wpr-169634

ABSTRACT

Monoclonal antibody (mAb, NVRQS-DON) against deoxynivalenol (DON) was prepared. DON-Ag coated enzyme linked immunosorbent assay (ELISA) and DON-Ab coated ELISA were prepared by coating the DON-BSA and DON mAb. Quantitative DON calculation ranged from 50 to 4,000 ng/mL for DON-Ab coated ELISA and from 25 to 500 ng/mL for DON-Ag coated ELISA. 50% of inhibitory concentration values of DON, HT-2, 15-acetyl-DON, and nivalenol were 23.44, 22,545, 5,518 and 5,976 ng/mL based on the DON-Ab coated ELISA. Cross-reactivity levels of the mAb to HT-2, 15-acetyl-DON, and nivalenol were 0.1, 0.42, and 0.40%. The intra- and interassay precision coefficient variation (CV) were both <10%. In the mAb-coated ELISA, mean DON recovery rates in animal feed (0 to 1,000 microg/kg) ranged from 68.34 to 95.49% (CV; 4.10 to 13.38%). DON in a buffer solution (250, 500 and 1,000 ng/mL) was isolated using 300 microg of NVRQS-DON and 3 mg of magnetic nanoparticles (MNPs). The mean recovery rates of DON using this mAb-MNP system were 75.2, 96.9, and 88.1% in a buffer solution spiked with DON (250, 500, and 1,000 ng/mL). Conclusively we developed competitive ELISAs for detecting DON in animal feed and created a new tool for DON extraction using mAb-coupled MNPs.


Subject(s)
Animals , Female , Mice , Animal Feed/analysis , Antibodies, Fungal/analysis , Antibodies, Monoclonal/analysis , Chemistry Techniques, Analytical/methods , Enzyme-Linked Immunosorbent Assay/methods , Food Contamination/analysis , Fusarium/immunology , Imidazoles/chemistry , Magnetics/methods , Mice, Inbred BALB C , Mycotoxins/analysis , Nanoparticles/chemistry , Ovalbumin/chemistry , Trichothecenes/analysis
8.
Journal of Veterinary Science ; : 363-369, 2012.
Article in English | WPRIM | ID: wpr-202784

ABSTRACT

In this study, we developed a novel tool for purifying two mycotoxins, aflatoxin B1 (AFB1) and zearalenone (ZEN), in feed. This system utilized monoclonal antibodies (mAbs) against AFB1 and ZEN, and magnetic nanoparticles (MNPs). Among ten MNPs with different diameters and functional groups, a 100-nm diameter MNP (fMA) conjugated to an amine group (-NH2) was found to be optimum for coupling with mAbs. The optimal mAb concentrations for coupling to the fMA along with mycotoxin purification capacities of the fMA-mAb conjugates (fMA-AFB1 and fMA-ZEN) were determined. A comparison of mean recovery rates (from corn and product X feed) between the fMA-mAb conjugates and immunoaffinity columns (IAC-AFB1 and IAC-ZEN) showed that the rate for fMA-AFB1 (90~92% and 81~88%) was higher (p > 0.05) than that of IAC-AFB1 (81~84% and 72~78%) for AFB1 (5, 10, 15 ng/mL), and the rate for fMA-ZEN (99~100% and 92~94%) was significantly higher (p 30 min). This study suggests that the novel purification system we developed would be a useful tool for monitoring and regulating mycotoxin contamination in feed, and replace IAC methods.


Subject(s)
Aflatoxin B1 , Antibodies, Monoclonal , Magnetics , Magnets , Mycotoxins , Nanoparticles , Zea mays , Zearalenone
9.
Toxicological Research ; : 279-288, 2012.
Article in English | WPRIM | ID: wpr-73341

ABSTRACT

Rats were administered zearalenone (ZEA) via gavage at dosages of 0, 1, 5, and 30 mg/kg for 36 days. On treatment day 8, inactivated porcine parvovirus vaccine (Vac) was injected intraperitoneally. Antibody production against porcine parvovirus was then measured as a function of ZEA treatment. Compared to the vaccine alone, ZEA treatment, with or without Vac, decreased the serum level of IgG. The level of IgM decreased in all ZEA groups at day 22, but the decrease was sustained only in the medium-dose ZEA group at day 36. The level of IgA was unchanged in the Vac only and ZEA groups at day 22, but was decreased in the 5 mg/kg ZEA plus Vac group compared to the Vac only group at day 36. The level of IgE was decreased by all doses of ZEA at day 22, but was unaffected in ZEA plus Vac groups compared to the Vac only group. The levels of IL-1 in the thymus and spleen; INF-gamma in serum; IL-2, IL-6, and IL-10 in the thymus; and IL-10 and IFN-gamma in the spleen decreased after ZEA administration. Furthermore, the levels of IL-1beta in the spleen and mesenteric lymph node, IL-1beta in the thymus, IL-2 in the thymus and spleen, IL-6 in the thymus, IL-10 and IFN-gamma in the spleen, and GM-CSF and TNF-alpha in the thymus decreased after vaccination in rats exposed to ZEA. In conclusion, these results suggest that ZEA exposure via drinking water can cause an immunosuppressive effect by decreasing immunoglobulins in serum and cytokines in lymphoid organs.


Subject(s)
Animals , Rats , Antibody Formation , Cytokines , Drinking Water , Granulocyte-Macrophage Colony-Stimulating Factor , Immunoglobulin A , Immunoglobulin E , Immunoglobulin G , Immunoglobulin M , Immunoglobulins , Interleukin-1 , Interleukin-10 , Interleukin-2 , Interleukin-6 , Lymph Nodes , Parvovirus, Porcine , Spleen , Thymus Gland , Tumor Necrosis Factor-alpha , Vaccination , Zea mays , Zearalenone
10.
Journal of Veterinary Science ; : 119-125, 2012.
Article in English | WPRIM | ID: wpr-174793

ABSTRACT

A monoclonal antibody (mAb) against zearalenone (ZEN) was produced using ZEN-carboxymethoxylamine and -BSA conjugates. Antibody produced by one clone showing a very high binding ability was selected and found to have a higher affinity for ZEN compared to a commerciall ZEN antibody. We developed two direct competitive ELISA systems using the selected antibody (ZEN-coated and anti-ZEN antibody-coated ELISA). Quantitative ranges for the anti-ZEN antibody-coated ELISA and ZEN-coated ELISA were from 25 to 750 ppb and from 12.5 to 100 ppb, respectively. The detection limit of both methods as measured with standard solutions was 10 ppb. The intra-plate and inter-well variation of both ELISAs were less than 10%. The IC50 values for alpha-zearalenol, beta-zearalenol, alpha-zearalanol, and beta-zearalanol compared to ZEN were 108.1, 119.3, 114.1, and 130.3% for the ZEN-coated ELISA. These values were 100.7, 120.7, 121.6, and 151.6% for the anti-ZEN antibody-coated ELISA. According to the anti-ZEN antibody-coated ELISA, the average recovery rates of ZEN from spiked animal feed containing 150 to 600 ng/mL of ZEN ranged from 106.07 to 123.00% with 0.93 to 2.28% coefficients of variation. Our results demonstrate that the mAb developed in this study could be used to simultaneously screen for ZEN and its metabolites in feed.


Subject(s)
Animals , Female , Mice , Aminooxyacetic Acid/chemistry , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay/methods , Inhibitory Concentration 50 , Mice, Inbred BALB C , Reproducibility of Results , Serum Albumin, Bovine/chemistry , Zearalenone/immunology
11.
Journal of Veterinary Science ; : 51-58, 2010.
Article in English | WPRIM | ID: wpr-160873

ABSTRACT

The methanol extract from the leaves of Petasites japonicus Maxim (PJ) was studied for its (anti-)mutagenic effect with the SOS chromotest and reverse mutation assay. The (anti-)carcinogenic effects were evaluated by the cytotoxicity on human cancer line cells and by the function and the expression of gap junctions in rat liver epithelial cell. PJ extracts significantly decreased spontaneous beta-galactosidase activity and beta-galactosidase activity induced by a mutagen, ICR, in Salmonella (S.) typhimurium TA 1535/pSK 1002. All doses of the extract (0.08-100 mg/plate) decreased the reversion frequency induced by benzo (alpha)pyrene (BaP) in S. typhimurium TA 98. It decreased not only the spontaneous reversion frequency but also that induced by BaP in S. typhimurium TA 100. PJ extract showed greater cytotoxic effects on human stomach, colon and uterus cancer cells than on other cancer cell types and normal rat liver epithelial cells. Dye transfers though gap junctions were significantly increased by PJ extracts at concentrations greater than 200 microg/mL and the inhibition of dye transfer by 12-O-tetradecanoylphorobol-13-acetate (TPA) was obstructed in all concentrations of PJ. PJ significantly increased the numbers of gap junction protein connexin 43, and increased the protein expression decreased by TPA in a dose-dependent manner. Based on these findings, PJ is suggested to contain antimutagenic and anticarcionogenic compounds.


Subject(s)
Animals , Humans , Rats , Cell Line, Tumor , Cell Survival/drug effects , Formazans/chemistry , Gap Junctions/metabolism , Mutagenicity Tests , Petasites/metabolism , Plant Extracts/pharmacology , Plant Leaves/metabolism , Tetrazolium Salts/chemistry
12.
Journal of Veterinary Science ; : 257-266, 2008.
Article in English | WPRIM | ID: wpr-57371

ABSTRACT

This study aimed to discover potential biomarkers for dioxynivalenol (DON) intoxication. B6C3F1 male mice were rally exposed to 0.83, 2.5 and 7.5 mg/kg body weight (bw) DON for 8 days and the differential protein expressions in their blood plasma were determined by SELDI - Time-of-Flight/Mass Spectrometry (TOF/MS) and the immunoglobulins (Igs) G, A, M and E in the serum were investigated. 11.7 kDa protein was significantly highly expressed according to DON administration and this protein was purified by employing a methyl ceramic HyperD F column with using optimization buffer for adsorption and desorption. The purified protein was identified as a haptoglobin precursor by peptide mapping with using LC/Q-TOF/MS and MALDI-TOF/MS and this was confirmed by western blotting and ELISA. IgG and IgM in serum were decreased in a dose-dependent manner and IgA was decreased at 7.5 mg/kg bw DON administration, but the IgE level was not changed. To compare the expressions of haptoglobin and the Igs patterns between aflatoxin B1 (AFB1), zearalenone (ZEA) and DON intoxications, rats were orally administered with AFB1 1.0, ZEA 240 and DON 7.5 mg/kg bw for 8 days. Haptoglobin was increased only at DON 7.5 mg/kg bw, while it was slightly decreased at ZEA 240 mg/kg bw and it was not detected at all at AFB1 1.0 mg/kg bw. IgG and IgA were decreased by DON, but IgG, IgA, IgM and IgE were all increased by AFB1. No changes were observed by ZEA administration. These results show that plasma haptoglobin could be a diagnostic biomarker for DON intoxication when this is combined with examining the serum Igs.


Subject(s)
Animals , Male , Mice , Rats , Aflatoxin B1/toxicity , Blood Proteins/drug effects , Enzyme-Linked Immunosorbent Assay , Haptoglobins/drug effects , Immunoglobulins/blood , Mass Spectrometry , Mice, Inbred Strains , Rats, Wistar , Trichothecenes/toxicity , Zearalenone/toxicity
13.
Journal of Veterinary Science ; : 361-368, 2007.
Article in English | WPRIM | ID: wpr-117481

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in air and food. Among PAHs, benzo(a)pyrene(BaP), phenanthrene (PH) and pyrene (PY) are considered to be important for their toxicity or abundance. To investigate the changes of biomarkers after PAH exposure, rats were treated with BaP (150 microgram/kg) alone or with PH (4,300 microgram/kg) and PY (2,700 microgram/kg) (BPP group) by oral gavage once per day for 30 days. 7-ethoxyresorufin-O-deethylase activity in liver microsomal fraction was increased in only BaP groups. The highest concentration (34.5 ng/g) of BaP, was found in muscle of rats treated with BaP alone at 20 days of treatment; it was 23.6 ng/g in BPP treated rats at 30 days of treatment. The highest PH concentration was 47.1 ng/g in muscle and 118.8 ng/g in fat, and for PY it was 29.7 ng/g in muscle and 219.9 ng/g in fat, in BPP groups. In urine, 114-161 ng/ml 3-OH-PH was found, while PH was 41-69 ng/ml during treatment. 201-263 ng/ml 1-OH-PY was found, while PH was 9-17 ng/ml in urine. The level of PY, PH and their metabolites in urine was rapidly decreased after withdrawal of treatment. This study suggest that 1-OH-PY in urine is a sensitive biomarker for PAHs; it was the most highly detected marker among the three PAHs and their metabolites evaluated during the exposure period and for 14 days after withdrawal.


Subject(s)
Animals , Female , Rats , Adipose Tissue/chemistry , Benzo(a)pyrene/analysis , Biomarkers/metabolism , Blood Chemical Analysis , Body Weight/drug effects , Cytochrome P-450 CYP1A1/metabolism , Environmental Pollutants/blood , Liver/drug effects , Lymphocytes/drug effects , Muscle, Skeletal/drug effects , Organ Size/drug effects , Phenanthrenes/blood , Pyrenes/analysis , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL